Geostatistical mapping of CS-137 contamination depth in building structures by integrating ISOCS measurements of different spatial supports

Rogiers B1,2, Boden S1,3, Jacques D1

1\textit{SCK\textbullet{}CEN}, 2KU Leuven, 3\textit{Belgonucleaire}

brogiers@sckcen.be

ICEM 2013 – 08-12/09/2013
Brussels, Belgium
Overview

- Introduction
- Measurements
- Geostatistics
- Decontamination
- Conclusions
Existing studies using geostatistics for radiological evaluation
- Deal with surface activity
- Use measurements with a constant spatial support (most cases)
- Quantify the spatial structure and provide risk maps
- Try to provide guidelines for sampling optimization

Desnoyers et al. 2011

Desnoyers & Dubot 2012
Introduction

- Existing studies using geostatistics for radiological evaluation
 - Deal with surface activity
 - Use measurements with a constant spatial support (most cases)
 - Quantify the spatial structure and provide risk maps
 - Try to provide guidelines for sampling optimization

- We present a methodology that
 - Uses measurements to quantify the contamination depth (which is proportional to waste volume)
 - Integrates different support volumes to get
 - complete coverage
 - smaller-scale details
• Decommissioning Belgian Reactor 3

• Floor of the waste gas surge tank room (18.4 m²)

• Well shielded, isolated room, used as temporary storage of highly activated and contaminated components

• Floor composition
 • Surface epoxy layer (5-11 mm)
 • Mortar
 • Concrete (at 34-42 mm)

• Background radiation ~ µSv/h

• Hotspots ~ 10^2 µSv/h

• Key radionuclide = Cs-137 Boden & Cantrel 2007
Overview

- Introduction
- Measurements
- Geostatistics
- Decontamination
- Conclusions
In Situ Object Counting System
- High purity germanium detector with shielding and collimators
- Various core samples from the BR3 building → exponential depth distribution
- Multiple photo peak method
 - Count rate ratio of the 32 keV + 662 keV peaks
- Contamination depth is defined as depth where activity concentration < 100 Bq/dm²

Measurements

Dewey et al. 2011
\[A_S(z) = A_S(0) \times e^{-\frac{z}{\bar{R}L}} \]

Rybacek et al. 1992
\[R(RL) = \frac{n_1}{n_2} = \frac{a d + 1/RL}{c b + 1/RL} \]

Canberra Industries 2003
Measurements

- **A**: Floor & measurement supports
- **B**: Large-scale ISOCS results (~106 dm²)
- **C**: Small-scale ISOCS results (~16 dm²)
Overview

- Introduction
- Measurements
- Geostatistics
- Decontamination
- Conclusions
Geostatistics

Variography

Experimental semivariogram

\[\gamma^*(h) = \frac{1}{2n} \sum [g(x) - g(x + h)]^2 \]

Exponential semivariogram model

\[\gamma(h) = (s - n)(1 - \exp(-h/a)) + n \]

Goovaerts 1997
Overview

- Introduction
- Measurements
- Geostatistics
 - Variography
 - *Spatial support*
 - Simulations
- Decontamination
- Conclusions
- Averaging over a support volume
 - Variance decreases
 - Correlation length increases
- From circle to point to square
- For simulations we need a point-scale variogram
- Block error estimate to represent averaging uncertainty: initially 1%

Sensitivity study revealed consistent results

\[a = a_1 - l \]
\[s = s_1 / \left(2 \left[\frac{a}{l} - \frac{a^2}{l^2} (1 - e^{-l/a}) \right] \right) \]

ISOCS
- ~106 dm²
- ~16 dm²
- ~9 dm²

Clark 1979

Clark 1977

Low energetic
High energetic
Overview

- Introduction
- Measurements
- **Geostatistics**
 - Variography
 - Spatial support
 - *Simulations*
- Decontamination
- Conclusions

http://sgems.sourceforge.net/

- Free
- State-of-the-art algorithms
- Some scripting capabilities
Geostatistics Simulations

1. Point support simulation [bssim/besim]
2. Upscaling to decontamination support [kriging]
3. Risk mapping [Postsim]
Point support simulation [bssim/besim]

Liu & Journel 2009

- Script to write SGeMS blockdata format for circular supports

Upscaling to decontamination support [kriging]

Risk mapping [Postsim]
• Realizations of contamination depth (mm)
• Conditioned on
 • Point-scale variogram
 • All ISOCS measurements
Geostatistics
Simulations

Circles

Point support simulation
[bssim/besim]
Liu & Journel 2009

Points

Upscaling to decontamination support
[kriging]

Risk mapping
[Postsim]
Geostatistics Simulations

Circles

Point support simulation
[bssim/besim]
Liu & Journel 2009

Points

Upscaling to decontamination support
[kriging]
Deutsch & Journel 1992

Squares

Risk mapping
[Postsim]

• R script to write
 SGeMS blockdata format
 for square supports
From point-scale realizations
From point-scale realizations

To decontamination-scale realizations
Geostatistics Simulations

Circles

Point support simulation [bssim/besim]
Liu & Journel 2009

Points

Upscaling to decontamination support [kriging]
Deutsch & Journel 1992

Squares

Risk mapping [Postsim]
Geostatistics Simulations

- Point support simulation (bssim/besim)
 - Liu & Journel 2009

- Upscaling to decontamination support (kriging)
 - Deutsch & Journel 1992

- Risk mapping (Postsim)
 - Remy et al. 2009
Postprocessing of 50 realizations

Probabilities of exceeding:
- A: 5 mm
- B: 10 mm
- C: 15 mm
- D: 20 mm
- E: 25 mm
Overview

- Introduction
- Measurements
- Geostatistics
- Decontamination
- Conclusions
Overview

- Introduction
- Measurements
- Geostatistics
- **Decontamination**
 - *Decontamination plan*
 - Laser + control measurements
 - Cost benefit
- Conclusions
Decontamination
Decontamination plan

- **Area I**
 - depth of about 5 to 10 mm
 - remove epoxy layer
- **Area II**
 - depth of about 20 to 25 mm
 - remove epoxy layer and part of mortar layer
- **Area III**
 - depth of about 35 to 40 mm
 - remove epoxy layer and mortar layer
• Introduction
• Measurements
• Geostatistics

• Decontamination
 • Decontamination plan
 • Laser + control measurements
 • Cost benefit

• Conclusions
Decontamination

Laser + control measurements

- Hand held scintillator measurements after first treatment
- Second iteration was necessary for four areas
- Afterwards everything below release level Cs-137: 100 Bq.dm$^{-2}$
- Removal of material for non-radiological reasons

Wall fracture?

Drain grate!
Overview

- Introduction
- Measurements
- Geostatistics
- **Decontamination**
 - *Decontamination plan*
 - *Laser + control measurements*
 - *Cost benefit*
- Conclusions
Proposed methodology allows for ~35% reduction of waste volume

Difference with the traditional approach is just the press of a button, since the algorithms can be automated

<table>
<thead>
<tr>
<th>Method</th>
<th>Volume Removed (m³)</th>
<th>Compared to traditional method (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Traditional: max contamination depth + SF</td>
<td>0.83</td>
</tr>
<tr>
<td>2</td>
<td>Decontamination plan (theoretically; but additional iteration might be required)</td>
<td>0.39</td>
</tr>
<tr>
<td>3</td>
<td>Decontamination plan (in practice)</td>
<td>0.60</td>
</tr>
<tr>
<td>4</td>
<td>Decontamination plan (in practice; excl. removal for non-radiological reasons)</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Overview

- Introduction
- Measurements
- Geostatistics
- Decontamination
- Conclusions
Conclusions

- Subsequent geostatistical down- and upscaling risk mapping & decontamination plan
- General picture was accurate, additional treatment was required for several spots, clearly identifiable on the provided maps
- Point-scale estimates remain problematic due to the remaining uncertainties
- Estimated ~35% waste volume reduction compared to more traditional conservative approach
- Recommendations
 - Large-scale ISOCS: achieve full coverage of an area
 - Small-scale ISOCS: if higher detail (depth + location) is needed

Acknowledgements

- The authors acknowledge G. Verstrepen, B. Wuyts and W. Smolders for performing the measurements and discussing the results.
- This test case was performed within a contract between the Belgian Agency for Radioactive Waste and Enriched Fissile materials, NIRAS/ONDRAF, and the SCK•CEN.
References

- S.C. Dewey et al., 2011, A method for determining the analytical form of a radionuclide depth distribution using multiple gamma spectrometry measurements, *Journal of Environmental Radioactivity*
PLEASE NOTE!
This presentation contains preliminary data for dedicated use ONLY
and may not be cited without the explicit permission of the author.
If this has been obtained, please reference it as a "personal communication. Copyright SCK•CEN".

SCK•CEN
Studiecentrum voor Kernenergie
Centre d'Etude de l'Energie Nucléaire
Belgian Nuclear Research Centre

Stichting van Openbaar Nut
Fondation d'Utilité Publique
Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS
Operational Office: Boeretang 200 – BE-2400 MOL

Questions?